Spit Syndicate
@spitsyndicate

May 15  
Thx for the spin playa



MOON AND STARS? DUST/AEROSOL CHARTS MFS MODEL FORECASTS SFS S4 MODEL DWD ENSEMBLES  JET STREAM FORECAST SUPER LONG RANGE WEATHER CHANCE OF RAIN/SNOW PROBABLY PROBABLE... TEMPERATURES + ANOMALY  RAIN OR SNOW? THUNDERSTORMS EXPECTED? PRESSURE CHARTS MIST/FOG ADVERSE WEATHER THIS WEEK  ICON BASED CHARTS ICON BASED CHARTS 
Notation  Meaning 

n  Number of participants 
t  Threshold value 
P_{i}  Participant i 
P  Participant set, P = {P_{1}, P_{2},⋯, P_{n}} 
q  A big prime number randomly chosen by the dealer, q > n 
S  Domain of the secret, S = GF(q) 
s  Secret, s ∈ S 
S_{i}  Domain of participant P_{i}’s secret shadow, S_{i} = GF(q) 
s_{i}  Participant P_{i}’s secret shadow, s_{i} ∈ S_{i} 
T  Domain of potential threshold 
t′  New threshold in DTCSSA scheme 
N  Number of potential thresholds in DTCSSB scheme 
h(x)  A polynomial 
h(x_{i})  Value of polynomial h(x) in a given x_{i} 
${y}_{i}^{j}$  Participant P_{i}’s j^{th} advance secret shadow 
ψ_{i}  Participant P_{i}’s secret shadow updating function 
f(r, s)  A twovariable oneway function 
deg(⋅)  Operator is used for computing the degree of the polynomial 
[x^{k}]  Coefficient operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, then [x^{k}] h(x) = a_{k}. 
[⋅]_{k}  Polynomial operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, ${\left[h\right(x\left)\right]}_{k}={\sum}_{i=0}^{k1}{a}_{i}{x}^{i}$. 
Notation  Meaning 

n  Number of participants 
t  Threshold value 
P_{i}  Participant i 
P  Participant set, P = {P_{1}, P_{2},⋯, P_{n}} 
q  A big prime number randomly chosen by the dealer, q > n 
S  Domain of the secret, S = GF(q) 
s  Secret, s ∈ S 
S_{i}  Domain of participant P_{i}’s secret shadow, S_{i} = GF(q) 
s_{i}  Participant P_{i}’s secret shadow, s_{i} ∈ S_{i} 
T  Domain of potential threshold 
t′  New threshold in DTCSSA scheme 
N  Number of potential thresholds in DTCSSB scheme 
h(x)  A polynomial 
h(x_{i})  Value of polynomial h(x) in a given x_{i} 
${y}_{i}^{j}$  Participant P_{i}’s j^{th} advance secret shadow 
ψ_{i}  Participant P_{i}’s secret shadow updating function 
f(r, s)  A twovariable oneway function 
deg(⋅)  Operator is used for computing the degree of the polynomial 
[x^{k}]  Coefficient operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, then [x^{k}] h(x) = a_{k}. 
[⋅]_{k}  Polynomial operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, ${\left[h\right(x\left)\right]}_{k}={\sum}_{i=0}^{k1}{a}_{i}{x}^{i}$. 
xvideo xx 661f
xvideo xx 661v
bokep video xx 361f
xvideo xx 665
xvideo xx 661
xvideo xx 601
bokep vidio xx 261f
bokep video xx 361f
bangla xvideo 2018
umk